Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Virol ; 96(14): e0048822, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1909580

ABSTRACT

Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.


Subject(s)
Reverse Genetics , Rotavirus , Spike Glycoprotein, Coronavirus , Vaccine Development , Amino Acids/metabolism , Animals , Antibodies, Viral/metabolism , COVID-19/virology , Epitopes/genetics , Epitopes/metabolism , Humans , Microorganisms, Genetically-Modified , Rotavirus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccine Development/methods
3.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1687054

ABSTRACT

Several countries have made unremitting efforts to develop an optimal vaccine in the fight against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the increasing occurrence of SARS-CoV-2 variants, current vaccines show decreased neutralizing activities, especially towards the Omicron variant. In this context, adding appropriate adjuvants to COVID-19 vaccines can substantially reduce the number of required doses and improve efficacy or cross-neutralizing protection. We mainly focus on research progress and achievements associated with adjuvanted COVID-19 subunit and inactivated vaccines. We further compare the advantages and disadvantages of different adjuvant formulations in order to provide a scientific reference for designing an effective strategy for future vaccine development.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/analysis , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/analysis , Humans , Vaccine Development/methods , Vaccines, Inactivated
4.
Clin Appl Thromb Hemost ; 28: 10760296211056648, 2022.
Article in English | MEDLINE | ID: covidwho-1685920

ABSTRACT

The progress in the development of various vaccine platforms against SARS-CoV-2 have been rather remarkable owing to advancement in molecular and biologic sciences. Most of the current vaccines and those in development focus on targeting the viral spike proteins by generating antibodies of varying spectrum. These vaccines represent a variety of platforms including whole virus vaccines, viral vector vaccines, nucleic acid vaccines representing RNA, DNA, and their hybrid forms.The therapeutic efficacy of these vaccines varies owing to their pharmacodynamic individualities. COVID-19 variants are capable of inducing different pathologic responses and some of which may be resistant to antibodies generated by current vaccines. The current clinical use of these vaccines has been through emergency use authorization until recently. Moreover, the efficacy and safety of these vaccines have been tested in substantial numbers of individuals but studies in special populations that better reflect the global population are pending results. These specialized populations include young children, immunocompromised patients, pregnant individuals, and other specialized groups. Combination approaches, molecularly modified vaccination approaches, and vaccines conferring longer periods of immunity are being currently being investigated, as well as pharmacovigilance studies.The continual transformation of SARS-CoV-2 and its variants are of concern along with the breakthrough infections. These considerations pose new challenges for the development of vaccination platforms. For this purpose, booster doses, combination vaccine approaches, and other modalities are being discussed. This review provides an updated account of currently available vaccines and those in advanced development with reference to their composition and mechanisms of action.A discussion on the use of vaccines in special populations including immunocompromised patients, pregnant women and other specialized populations are also included.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Development/methods , Adolescent , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Child , Female , Humans , Immunocompromised Host , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/virology
5.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1674673

ABSTRACT

The SARS-CoV-2 pandemic caused a massive health and societal crisis, although the fast development of effective vaccines reduced some of the impact. To prepare for future respiratory virus pandemics, a pan-viral prophylaxis could be used to control the initial virus outbreak in the period prior to vaccine approval. The liposomal vaccine adjuvant CAF®09b contains the TLR3 agonist polyinosinic:polycytidylic acid, which induces a type I interferon (IFN-I) response and an antiviral state in the affected tissues. When testing CAF09b liposomes as a potential pan-viral prophylaxis, we observed that intranasal administration of CAF09b liposomes to mice resulted in an influx of innate immune cells into the nose and lungs and upregulation of IFN-I-related gene expression. When CAF09b liposomes were administered prior to challenge with mouse-adapted influenza A/Puerto Rico/8/1934 virus, it protected from severe disease, although the virus was still detectable in the lungs. However, when CAF09b liposomes were administered after influenza challenge, the mice had a similar disease course to controls. In conclusion, CAF09b may be a suitable candidate as a pan-viral prophylactic treatment for epidemic viruses, but must be administered prior to virus exposure to be effective.


Subject(s)
Adjuvants, Vaccine/therapeutic use , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Vaccine Development/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , Adjuvants, Vaccine/administration & dosage , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/pharmacology , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/therapeutic use , Cells, Cultured , Chick Embryo , Gene Expression Regulation/drug effects , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/pharmacology , Interferon Type I/genetics , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Primary Prevention/methods , SARS-CoV-2/immunology
6.
Sci Rep ; 12(1): 439, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1617002

ABSTRACT

The spread of SARS-CoV-2 led to rapid vaccine development. However, there remains considerable vaccine hesitancy in some countries. We investigate vaccine willingness in three nations with very different vaccine histories: Israel, Japan and Hungary. Employing an ecological-systems approach we analyse associations between health status, individual cognitions, norms, trust in government, COVID-19 myths and willingness to be vaccinated, with data from three nationally representative samples (Israel, Jan. 2021, N = 1011; Japan, Feb. 2021, N = 997; Hungary, April 2021, N = 1130). Vaccine willingness was higher in Israel (74%) than Japan (51%) or Hungary (31%). In all three countries vaccine willingness was greatest amongst who would regret not being vaccinated and respondents who trusted their government. Multi-group latent class analysis identified three groups of COVID myths, with particular concern about alteration of DNA (Israel), allergies (Hungary) and infection from the vaccine (Japan). Intervention campaigns should address such cultural myths while emphasising both individual and social benefits of vaccination.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination Hesitancy/psychology , Vaccination/psychology , Vaccine Development/methods , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Health Knowledge, Attitudes, Practice , Humans , Hungary , Israel , Japan , Logistic Models , Male , Middle Aged , Pandemics/prevention & control , Patient Acceptance of Health Care/psychology , Patient Acceptance of Health Care/statistics & numerical data , SARS-CoV-2/physiology , Sociodemographic Factors , Vaccination/statistics & numerical data
7.
J Immunol Methods ; 502: 113216, 2022 03.
Article in English | MEDLINE | ID: covidwho-1611844

ABSTRACT

Coronavirus Disease 2019 (COVID-19) represents a new global threat demanding a multidisciplinary effort to fight its etiological agent-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this regard, immunoinformatics may aid to predict prominent immunogenic regions from critical SARS-CoV-2 structural proteins, such as the spike (S) glycoprotein, for their use in prophylactic or therapeutic interventions against this highly pathogenic betacoronavirus. Accordingly, in this study, an integrated immunoinformatics approach was applied to identify cytotoxic T cell (CTC), T helper cell (THC), and Linear B cell (BC) epitopes from the S glycoprotein in an attempt to design a high-quality multi-epitope vaccine. The best CTC, THC, and BC epitopes showed high viral antigenicity and lack of allergenic or toxic residues, as well as CTC and THC epitopes showed suitable interactions with HLA class I (HLA-I) and HLA class II (HLA-II) molecules, respectively. Remarkably, SARS-CoV-2 receptor-binding domain (RBD) and its receptor-binding motif (RBM) harbour several potential epitopes. The structure prediction, refinement, and validation data indicate that the multi-epitope vaccine has an appropriate conformation and stability. Four conformational epitopes and an efficient binding between Toll-like receptor 4 (TLR4) and the vaccine model were observed. Importantly, the population coverage analysis showed that the multi-epitope vaccine could be used globally. Notably, computer-based simulations suggest that the vaccine model has a robust potential to evoke and maximize both immune effector responses and immunological memory to SARS-CoV-2. Further research is needed to accomplish with the mandatory international guidelines for human vaccine formulations.


Subject(s)
Antigens, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Antigens, Viral/genetics , Antigens, Viral/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/therapeutic use , Computational Biology , Computer Simulation , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Immunogenicity, Vaccine/genetics , Immunologic Memory , Protein Domains/genetics , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes, Cytotoxic , Toll-Like Receptor 4/metabolism , Vaccine Development/methods , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use
8.
Cell Rep ; 38(2): 110205, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588142

ABSTRACT

Spontaneous mutations introduce uncertainty into coronavirus disease 2019 (COVID-19) control procedures and vaccine development. Here, we perform a spatiotemporal analysis on intra-host single-nucleotide variants (iSNVs) in 402 clinical samples from 170 affected individuals, which reveals an increase in genetic diversity over time after symptom onset in individuals. Nonsynonymous mutations are overrepresented in the pool of iSNVs but underrepresented at the single-nucleotide polymorphism (SNP) level, suggesting a two-step fitness selection process: a large number of nonsynonymous substitutions are generated in the host (positive selection), and these substitutions tend to be unfixed as SNPs in the population (negative selection). Dynamic iSNV changes in subpopulations with different gender, age, illness severity, and viral shedding time displayed a varied fitness selection process among populations. Our study highlights that iSNVs provide a mutational pool shaping the rapid global evolution of the virus.


Subject(s)
COVID-19/virology , Host-Pathogen Interactions/genetics , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Genome, Viral/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccine Development/methods , Young Adult
9.
EBioMedicine ; 74: 103699, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1520831

ABSTRACT

COVID-19 has become a major cause of global mortality and driven massive health and economic disruptions. Mass global vaccination offers the most efficient pathway towards ending the pandemic. The development and deployment of first-generation COVID-19 vaccines, encompassing mRNA or viral vectors, has proceeded at a phenomenal pace. Going forward, nanoparticle-based vaccines which deliver SARS-CoV-2 antigens will play an increasing role in extending or improving vaccination outcomes against COVID-19. At present, over 26 nanoparticle vaccine candidates have advanced into clinical testing, with ∼60 more in pre-clinical development. Here, we discuss the emerging promise of nanotechnology in vaccine design and manufacturing to combat SARS-CoV-2, and highlight opportunities and challenges presented by these novel vaccine platforms.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , Liposomes/pharmacology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Humans , Nanoparticles , Pandemics/prevention & control , Vaccine Development/methods
10.
Structure ; 30(1): 55-68.e2, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1500270

ABSTRACT

Structural biologists provide direct insights into the molecular bases of human health and disease. The open-access Protein Data Bank (PDB) stores and delivers three-dimensional (3D) biostructure data that facilitate discovery and development of therapeutic agents and diagnostic tools. We are in the midst of a revolution in vaccinology. Non-infectious mRNA vaccines have been proven during the coronavirus disease 2019 (COVID-19) pandemic. This new technology underpins nimble discovery and clinical development platforms that use knowledge of 3D viral protein structures for societal benefit. The RCSB PDB supports vaccine designers through expert biocuration and rigorous validation of 3D structures; open-access dissemination of structure information; and search, visualization, and analysis tools for structure-guided design efforts. This resource article examines the structural biology underpinning the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mRNA vaccines and enumerates some of the many protein structures in the PDB archive that could guide design of new countermeasures against existing and emerging viral pathogens.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , COVID-19/immunology , Computational Biology/methods , Databases, Protein , Protein Conformation , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , COVID-19/epidemiology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Drug Design , Humans , Internet , Models, Molecular , Pandemics/prevention & control , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Vaccination/methods , Vaccine Development/methods , Viral Proteins/chemistry , Viral Proteins/immunology , Viral Proteins/ultrastructure
11.
Viruses ; 13(10)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1481007

ABSTRACT

Nipah virus (NiV) and respiratory syncytial virus (RSV) possess two surface glycoproteins involved in cellular attachment and membrane fusion, both of which are potential targets for vaccines. The majority of vaccine development is focused on the attachment (G) protein of NiV, which is the immunodominant target. In contrast, the fusion (F) protein of RSV is the main target in vaccine development. Despite this, neutralising epitopes have been described in NiV F and RSV G, making them alternate targets for vaccine design. Through rational design, we have developed a vaccine strategy applicable to phylogenetically divergent NiV and RSV that comprises both the F and G proteins (FxG). In a mouse immunization model, we found that NiV FxG elicited an improved immune response capable of neutralising pseudotyped NiV and a NiV mutant that is able to escape neutralisation by two known F-specific antibodies. RSV FxG elicited an immune response against both F and G and was able to neutralise RSV; however, this was inferior to the immune response of F alone. Despite this, RSV FxG elicited a response against a known protective epitope within G that is conserved across RSV A and B subgroups, which may provide additional protection in vivo. We conclude that inclusion of F and G antigens within a single design provides a streamlined subunit vaccine strategy against both emerging and established pathogens, with the potential for broader protection against NiV.


Subject(s)
Antibodies, Viral/blood , Henipavirus Infections/prevention & control , Nipah Virus/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Vaccine Development/methods , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Vaccines/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL